
Cluster Reliability Subsystem

 - 1 -

Cluster Reliability Subsystem

Jim Kowalkowski

1 Introduction
The LQCD compute cluster is going to be very large and will need to be available
24 hours a day. The cluster should insure that resources are used to best possi-
ble extent and attempt to complete started tasks in the presence of hardware and
software failures (be fault resilient). The administration and support team has
typically been small. As the cluster grows, the load on this team also grows.
Without a set of tools to automate routine administrative and problem solving
tasks, the team could spend too much time doing them manually. An automated
system will also improve response time in routine problem solving.

The question being addressed in this document is: How do we increase the
availability, utilization, and reliability of the computing cluster and also reduce the
administrative workload associated with these activities? The purpose of this
document is to define a cluster monitoring and control subsystem that can be
used to solve this problem.

Examples of things that can affect availability and performance include:

• power outages - scheduled and unscheduled
• job failures due to failing or failed hardware
• scheduling jobs on faulty nodes
• decreased performance due to hardware deterioration
• decreased performance due to external influences (e.g. air quality)
• inability to diagnose problems (e.g. hardware, OS, batch tools)

One job of this subsystem is to recognize that we are in situations such as the
ones described above and then react to either correct the problem or manipulate
the system so that we can live with the problem. Correcting a problem can mean
cleaning up after a failed job, or rebooting a node that is in a bad state, or revali-
dating a piece of hardware. Living with a problem can mean removing a node
from service. A second purpose of this document is to list a basic set monitoring
and reaction components that should be available immediately.

1.1 Scope
The goal of this subsystem is not to produce a comprehensive list of all possible
problems that can occur on a cluster, but only to produce a list that is a starting
point based on what we already know to be problems. This initial list will help us

 - 2 -

develop the correct abstraction for later iterations and additions, and also provide
the project will a usable product instead of just a toolkit.

The initial focus for direct application of this system will be on hardware-related
problems and necessary interactions with core software infrastructure pieces
such as the operating system, the batch queuing system, and the job scheduler.

This subsystem will not include development of facilities for which there already
exists a reasonable solution to a particular problem. An example is a message
passing system.

1.2 Rationale
The introduction has already stated some of the reasons for creating this subsys-
tem.

1.3 Terminology
Software framework: The software that ties all functionality necessary to operate
the system together and enforces uniformity in configuration, data exchange, and
execution semantics between all the components under its control.

Pluggable software component: a body of executable code that conforms to an
API of a software framework and is callable from that framework. This code can
be added to or removed from the running instance of that software framework on
demand. This code does not need to be part of the core or base installation of
the software framework. Each of these components is independent of the others.
They communicate using abstractions provides by the software framework.

Monitor: a software component that watches some part of the system being
monitored and reports information about that part.

Reactor: a software component that subscribes to information reported by moni-
toring or other report generating software and takes action based on the contents
of one or more reports.

Event: A structured piece of information in the form of a message describing an
occurrence within the system e.g. measured quantity or state change.

Sensor: A software component that makes measurements from the environment,
formats the information input an “event”, and sends the event into the system
(plugin).

Filter: A software component that prevents events from entering a particular part
of the system.

Analyzer: a software component that takes in events and attempts to draw con-
clusions about them (plugin).

Effector: A software component that takes actions based on results from Analyz-
ers or input from Sensors (plugin).

Cluster Reliability Subsystem

 - 3 -

1.4 Basic feature overview
The system must allow users to define software components that monitor any
activity on the cluster either periodically or asynchronously using interrupts (e.g.
signals, exceptions) and report findings in a standardized way. The system must
also allow users to define software components that subscribe to specific report
types and can react to the information. A software framework that allows all these
user-defined components to be installed and removed dynamically across the
entire system from a central authority is highly desirable.

Some basic features of this subsystem include:

• Definition of the types of information that must be communicated and the
general format of that information,

• Definition of APIs for communicating information and the creation of monitors
and reactors, including programming language bindings that allow creation of
monitors and reactors in languages known to the users,

• Definition of a work environment for writing, testing, and releasing new reac-
tors and monitors,

• Definition of a core or basic set of problems that must be addressed, and the
monitors and reactors and the data structures that they will communicate in
order to solve the problems,

• Recording of monitoring information and actions taken so the information can
be used in the future,

• Administration tools that allow for single-point release distribution and installa-
tion, and control of the runtime environment,

• A configuration system that allows for uniform parameter setting for reactors
and monitors and allows for tuning to adjust the performance impact that this
system will have on applications.

We also know of techniques within operating system process schedulers for pro-
viding time slices that are synchronized across the entire cluster. The advantage
of such an arrangement is that all monitoring activities can be performed at
nearly the same time on all nodes, meaning that individual program instances
within one job will not be starved for information from other program instances
that are waiting for administrative (monitoring) tasks to complete. We would like
to know if such an approach can be used to improve the performance of the
LQCD cluster and if so, how to incorporate it into this system.

1.5 Organization of this paper
This paper will discuss most of the areas that need to be addressed for this pro-
ject. Those areas include:

• Development environment (repository structure and tools)
• Build/Release strategy (including tools and management)

 - 4 -

• Installation/Deployment
• Unit test strategy
• Setup and use of a test stand
• Configuration management for a running system

Most of the diagrams in this paper follow the following rules. Green ovals are
functions of external system that we rely on. Yellow ovals are functions that we
own. The grey boxes are collections of files. The arrows are used to show data
flow between functions and files (one can also say that they represent a “uses”
relationship between two components). Grey ovals represent functions that are
plugins, isolated functions are bound to the system at run-time.

1.6 Questions this paper should address
During initial discussions of this system, the following list of things that need to be
addressed:

• How does configuration work? (at the system and module level)
• Who talks to whom? (addressing within messages)
• What is the Effector API and what is its purpose?
• What is the Coordinator’s purpose?
• How should sampling work? (push/pull, triggered on changes)
• Should we support dynamic sampling rates based on messages arriving?
• How will testing work? (Sensors as data generators)

This document should be modified to include information about all of these
things.

2 A brief survey
Here we are going to briefly address the following questions:

• What does the current system do to address the problem?
• What do other similar (HEP/LQCD) installations do to handle the problem?
• What do other application areas do to address the problem?

We recognize that there are several existing products that will most likely be use-
ful in constructing this subsystem. Examples of products include: Ganglia,
MonALISA, Nagios, NetLogger, RRDtool, various SNMP tools, OpenNMS, and
Aware.

2.1 The current system
There exists a process (agent) on each worker node called a Health. It is a script
written in Perl. It is a daemon that periodically runs a long series of code blocks
that check various things (about every 10 minutes). These code blocks read tem-
peratures, load, fan speeds, disk information and many other things from the OS.
They verify that processes are running, such as PBS. They verify that file sys-

Cluster Reliability Subsystem

 - 5 -

tems are up. Each can take corrective action. They watch for out of control proc-
esses, filled file systems, or other similar activities. They also watch if MPD
becomes stuck. All collected data and announcements from the worker are sent
to the head node using the syslog facility.

The syslogd on lqcd.fnal.gov (the head node) collects messages from the worker
and writes them to log files. Another daemon process called nanny scans the log
files and parses out any interesting information. The nanny also monitors various
services on the head node. It sends email message to alert people of recognized
conditions and automatically takes some actions such as restarting processes if
there are problems. The performance measurement messages are sent to the
hplot/MRTG tools for network throughput trend plotting and web page building. A
second daemon called qcdmonitor watches the log files for temperature meas-
urement data messages. This process has the responsibility of shutting down the
entire cluster if a majority of the machines are starting to run too hot.

Figure 1

Figure 1 shows the functions of the current system running on the head node and
there relationship to one another. The important feature here is that log files ap-
pear in a file system directory and are periodically scanned for interesting
information by daemons. The syslog facility and level direct messages to particu-
lar log files.

Figure 2 shows the functions that the current worker supplies. The diagram de-
picts them at plugins according to the conventions used in this document, but
really they are fixed code blocks with in the script. The IPMI information for this
worker is read directly on the worker. The health script watches disk, swap, and

 - 6 -

NFS mounts (aspects of storage monitoring), it also watches for PBS to be stuck
(service monitor), measures uptimes, makes sure that the IB drivers to be work-
ing, and checks that the CPU state is OK (hyperthreading is off and the
processor is running at the correct speed). The physical attributes monitor reads
fan speeds and temperatures.

Figure 2

Nodes currently cannot be taken out of service (uninstalled from PBS availabil-
ity). Hung nodes are a problem; they are only noticed by failure to be able to
schedule jobs. We want to automate restarting these failed nodes. Some failures
are related to temperature. In the case of hung jobs where node restart is re-
quired, entire MPI jobs get hung and need cleanup. Notifications of failures and
actions need to be sent out. If the head node is hung (head of MPI job), the job is
really stuck because of the relationship between a job and PBS - in other words,
PBS is stuck with regards to this job. Restarting jobs based on policy is useful
also. Automating the boot sequence is also valuable. There is a verification job
that needs to run under power-up or on other occasions.

2.2 Other HEP/LQCD experiment experiences
To be filled out.

2.3 Solutions in other clusters
To be filled out.

3 Overview
We are considering a system where pluggable components hook into a message
distribution system for routing and delivery to other pluggable components. For

Cluster Reliability Subsystem

 - 7 -

lack of a better term, for now we will call this distribution process the coordina-
tion framework.

From a high-level infrastructure point of view, this core part or fundamental part
of the system is composed of three things: the coordination framework, a basic
set of plugins to minimally provide existing functionality, and a set of databases.
Additional features such as automated diagnostic tools will be built on top of
these core pieces.

We will be involved in the defining and writing plugins, which are essentially
measurement, diagnostic, and recovery scripts that conform to the coordinator
API. Any instance of a plugin is under direct control of the coordinator. The coor-
dinator causes the plugins to come to life and to be called upon to perform their
task. The coordinator is responsible for message routing and delivery to final
destinations.

The databases for this project are important. The information stored will be used
for problem diagnosis and to better understand the operation characteristics of
the cluster. They will also be used to know the state of the hardware and soft-
ware within the cluster. The major database types include: monitoring (data from
the messages arriving from the coordinator), state (what hardware is working),
inventory (installed software and hardware and its name and address), and
bookkeeping (attached directly to coordinators containing addressing information,
scripts, versioning, and state). The monitoring data is placed into the monitoring
database by a plugin. The same is true for the state changes or status changes
caused by arriving messages. The bookkeeping database is used directly by the
coordinator to maintain state and configuration information. Deployment and con-
figuration tools populate, distribute, and maintain, the bookkeeping databases.

4 Requirements
Describe how this subsystem will be used by outside actors. Include constraints
imposed by outside systems and any other important factors governing its design
and implementation.

 - 8 -

4.1 Actors
Describe here the set of characters that will be interacting with this system. This
list should not include internal actors.

4.2 The Major Inputs and Output
Describe what the system needs to do its work and what it produces.

4.3 Behavioral requirements (use cases)
List the steps necessary to perform each important task associated with this sys-
tem. Do not include any implementation details here, only brief statements of
actions and responses for each one. Each use case should only cover one spe-
cific task. Below is a template for use cases.

4.3.1 Prototype use-case
Task Name of this task

Level Summary/user goal/sub-function

Goal Stated as a short active verb phrase

Actor Who does this

Trigger Why this is happening

Preconditions Things which must exist before the use case can start, and
any particular state the overall system must be in to allow per-
formance of this case

Post-
conditions

New state which exists at successful completion of use
case

Description Steps (numbered) to complete the task. This should include a
narrative description of the manageable series of steps that
make up the use case

Nonstandard
Flow

Exceptions (error conditions) to the standard flow or alternative
success routes.

Comments Link to other information regarding with use case

4.3.2 Create a Sensor Plugin
Task Create a new Sensor plugin

Level user goal

Cluster Reliability Subsystem

 - 9 -

Goal Write a new plugin that functions as a sensor and make it avail-
able for use.

Actor Developer (administrator acting in this role)

Trigger New measurement is needed

Preconditions None

Post-
conditions

New messages and plugin are available and identified in the in-
ventory database

Description 1. Define the message type and payload format. Register
the message.

2. Identify the parameters necessary to configure this plugin.

3. Create a new directory for storage into CVS using the
sensor prototype plugin.

4. Write plugin script according to the coordination frame-
work API. Involves writing an initialization routine that
takes addressing information and configuration parame-
ters, writing functions to announce required message
types (produced and consumed), to produce data, and to
access messages.

5. Write a test for the plugin and run it

6. Check everything into CVS and tag it with a version num-
ber.

7. Use the administrative tools for the inventory database to
declare that the plugin is available for use.

Nonstandard
Flow

None

Comments None

4.4 Constraints
List any additional non-functional requirements here or reference them here. Ex-
amples include known external interfaces or protocols or performance
constraints.

We are required to use Python as language for writing plugins.

Desire to have sensor and effector processing synchronized across all workers
(assuming clock sync with NTP good enough).

 - 10 -

5 Architectural Overview
This section can contain a series of diagram illustrating system parts and their
relationships.

5.1 Roles
The roles or functional units are defined and described in this section.

5.2 Functional unit or Component block diagram
Figure 3 shows the components we want to see active on the head node in the
final system. The grey ovals to the left of the coordinator represent data produc-
ing plugins that we want to have. They provide information to the coordinator in
the form of messages. The grey ovals to the right of the coordinator represent
plugins that consume messages and act upon them. Some of the plugins, in turn,
can send new messages back to the coordinator. The functionality shown here is
greater than that of the current system.

Figure 3

Each monitor should perform a specific task. Some of the monitors shown may
actually turn out to be a set of plugin. An example would be the Service Monitor;
if there difficult types of services that end up being monitored, it might be advan-
tageous to create one monitor per service type to simplify development, testing,
and configuration. Because the IPMI data is available on the network within in-
teraction with the processor on a node, we can create an IPMI Monitor

Cluster Reliability Subsystem

 - 11 -

independent of the node being monitored. This has the advantage that the CPU
on a worker does not need to be involved. The Dcache monitor reports perform-
ance data and status information from the dcache nodes. Other interesting
additions are the email monitor, which watches for relevant information arriving
on the administration and user email lists, and the hooks into the batch system
and scheduler, for producing messages about jobs.

The action-takers are actually a set of plugins that may function as both analyz-
ers and effectors (plugins on the right). It is probably easier to create them as a
pair of plugins: one that does the analysis to discover that something is wrong,
therefore producing a message about the problem, and one that takes action
based on the receipt of a message containing information about an observed
condition. There should be one action-taker per unique thing that needs to be
taken care of given a set of messages. A good example of an analyzer/action-
taker is an analyzer component that watches the temperature measuring and
concludes that the farm has exceeded a given threshold. The effector component
watches for the exceeded-threshold message and issues the proper instructions
to shut down the cluster. The archiver plugins turn incoming messages into data
that will be stored in a relational database.

The bookkeeping database is generated as part of the configuration/release pro-
cedures. It contains information that the coordinator needs to operate, such as
the plugins that need to be active and their specific configuration data, identity
information (addressing and names), and parent child connection requirements.

Figure 4

Figure 4 shows the components we want to see active in a worker. The general
description of the types of plugins matches that of the head node and will not be

 - 12 -

repeated here. An interesting addition here is the job profile/resource monitoring
plugins. There components report when different kinds of job activities or phases
are occurring and how long they take. Examples are staging data, running, or
saving results.

5.3 Physical unit block diagram
Show here the known hardware configuration that is to be built or is available for
use.

5.4 Deployment scenario
How do functional units and components map to physical devices?

6 Component Interfaces
Expand the interfaces of the components shown in the previous section. Include
relationships to other components here.

7 Protocols
Describe known elements of any protocol involved in data exchanges, external or
internal to this subsystem, and the types of messages or data that may be ex-
changed.

Show important invocation or message exchange timing sequences here. Show
what parts of the interfaces are used by other components.

All messages sent need to include the following information.

Len TimeStamp Sender creatorType msgType payload

Where:

• Len = length of the message in bytes
• TimeStamp = time that the message was generated (seconds/milliseconds)
• Sender = address of the sender
• CreateType = The type of plugin that created it (sensor, analyzer, effector)
• MsgType = The type of message that this is (phys attr, resource usage, etc.)
• Payload = the data specific to this type of message

Note that a destination is not given in the message. Messages are received
based on the type that they are, not on who sent them. The type information may
need to be expanded to include a list of more general categories that the mes-
sage belongs to (e.g. fan speed and CPU temperature are physical attribute
measurements). Message types may need to be globally registered to make the
problem easier to solve.

Cluster Reliability Subsystem

 - 13 -

8 Discussion
This section captures discussions and information that lead to the current archi-
tecture view and component organization.

8.1 Decisions and Choices
Other solutions that were considered and rejected should be briefly summarized
here along with arguments for and against them. The purpose of doing this is so
old arguments do not continually resurface.

8.2 Rationale
Why the current architecture and component interfaces are appropriate for the
problem.

8.3 Implications resulting from Choices
Additional constraints that are imposed on the whole system or this system as a
result of choices made here.

8.4 Resulting rules
Include all things that must be true in the system and rules that must be followed
while the system is in operation. An example is that one worker node will only be
assigned to one partition.

8.5 Constraints imposed on other systems
List what constraints this system imposed on other systems.

9 Testing considerations
Explain any load testing that must be performed to evaluate the performance of
this system as a whole or parts within it. Suggestions for how to test (verification
and validation) this system should be included. Ways of evaluating the perform-
ance of this system should be included here.

10 Work Plan

10.1 Phase One
• Define terminology to be used to describe all the pieces of this subsystem.
• Design and deploy a database that can be loaded using the current software

infrastructure. This will allow us to better understand the things that are cur-
rently being collected and also understand how the data should be

 - 14 -

catalogued and stored for short and long term use. Code will be needed to
scan current log files and to load the database. The database should include
jobs run and all node assignments within the job.

• Select a distributed messaging system and establish an operating prototype.
If possible, the chosen system should cover the requirements for a framework
for processing the messages also (much of the coordinator role). The deci-
sion might be simpler here if a list of desired and required featured is
generated.

• Establish a small cluster for development and testing. We discussed using a
set of machines at Fermilab or at Vanderbilt. We have extra Infiniband cards
and a switch that can be used for testing. The cards will work in PCI-X or PCI
(in a degraded mode) based systems.

• Define a repository for doing development and method for building and re-
leasing product. This might be a good time to try out subversion and SCONS.

Nearly all of these activities can be done in parallel.

